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Chaotic Langevin equation with the deterministic algebraically correlated noise

T. Srokowski
Institute of Nuclear Physics, PL– 31-342 Krako´w, Poland

~Received 8 July 1998!

We solve the Langevin equation, consisting of a double-well potential and a periodic time-dependent driving
term, with a deterministic, algebraically correlated noise. Homoclinic instabilities are studied by means of the
Melnikov method. The influence of noise on chaotic motion is discussed in terms of Lyapunov exponents. The
results are compared with the case of exponentially falling noise correlations. A simple example of passage
over the potential barrier is considered in the context of dynamical stability.@S1063-651X~99!05403-3#

PACS number~s!: 05.40.2a, 05.45.2a
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The Langevin description of a stochastic process, incl
ing the uncorrelated random forcef (t), is in many cases an
unrealistic idealization. In fact, a process can be appro
mately regarded as Markovian if the time scales involved
large compared to the noise correlation time. Such an
proximation must fail if one tries to describe a hig
dimensional system using the Langevin formalism with o
few degrees of freedom, because that procedure destro
general the Markovian property of the original system@1#.
Some physical problems impose specific requirements in
of matter correlations. For example, algebraic correlati
~AC’s!, have been found in connection with the nois
induced Stark broadening@2# and molecular dynamics de
scription of nuclear collisions@3#. In those problems, the
stochastic force autocorrelation functionCf(t)5^ f (0) f (t)&
;1/t. This form of the noise autocorrelation function implie
important consequences for the stochastic motion of
Brownian particle@4#. The diffusion coefficient is not con
stant but rises with time like lnt; thus the transport is faste
than in the case of rapidly decaying correlations~the anoma-
lously enhanced diffusion!. Trajectories of the Brownian par
ticle are shaped typically for Le´vy flights @5#. Moreover, the
energy spectra of particles escaping from a potential wel
parabolic shape have a Gaussian tail, and exhibit a
nounced sharp peak, whereas the survival probability
pends on time like 1/t. In most of the applications, howeve
we have to deal with potentials more complicated than
harmonic oscillator considered in Ref.@4#, and systems with
many degrees of freedom. Then the motion can become
otic. The main purpose of this paper is to study the onse
chaos in the Langevin equation with AC noise.

A first token of irregularity in a dynamical system is th
presence of homoclinic points. Stable and unstable manif
connected to a given hyperbolic fixed point do not coinci
as is the case for an integrable system, but they themse
intersect transversely. As a result, the motion near sep
trices becomes chaotic. A method introduced by Melnik
@6,7# allows us to identify the homoclinic instability in th
first order of the perturbation theory. Bulsara, Schieve, a
Jacobs@8# used it to study stability properties of nonline
Langevin equations with white noise. We will apply th
Melnikov method to a system consisting of a double-w
potential, friction and a time-dependent periodic force~the
Duffing oscillator@9#!, driven additionally by the stochastic
algebraically correlated forcef (t). The Langevin equation
reads
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ẋ5v,
~1!

v̇5x2x32av1g cosvt1 f ~ t !,

where we have taken the particle mass to be equal to 1.
different choices of constant parametersa, g, and v, the
Duffing oscillator behaves either regularly or chaotica
@10#. About the stochastic forcef (t) we assume that̂f (t)&
50 andCf;1/t, where^ & denotes the average over a st
tistical ensemble. A physical process which meets these
quirements, and therefore can be used as a noise genera
numerical simulations, is the Lorentz gas of periodically d
tributed scatterers, equivalent to the Sinai billiard with pe
odic boundary conditions. That deterministic, conservati
and strongly chaotic system consists of a particle with
velocity u5(u1 ,u2), bouncing elastically from hard disk
and moving freely between successive collisions. The p
ticle motion is determined by geometry of the billiard: th
disk radiusRD and the distance between disk centersLD .
One can distinguish two important cases. IfLD.2RD
~the open horizon!, the particle can wander throughout th
entire lattice, otherwise the disks intersect themselves
the particle is confined within a small area~the close hori-
zon!. In the case of open horizon the particle velocity au
correlation functionCu5^ui(0)ui(t)&, i 51 and 2 has the
required algebraic form 1/t, in the limit of long time@11#.
This surprisingly long correlation tail is due to the slow
falling free path lengths distribution;s23 @12#. For the
close horizonCu is exponential~the EC case!. Thus inserting
the velocity of particle in the Lorentz gas system to t
Langevin equation, one can simulate both kinds of corre
tion. In the following, we takef (t)5ku1(t) wherek is the
noise amplitude, providinguuu51. We have ku1(t)[ f i
5const fort i<t,t i 11 if collisions with disks take place a
time t i .

For general nonlinear systems, the stable and unst
separatrices usually do not join to each other smoothly
intersect themselves. The Melnikov idea consists of check
whether that intersection really happens, calculating dire
the distance between the separatrices in the first order o
perturbation theory. To apply it to our problem, we rewr
the Langevin equation~1! in the form v̇5x2x31 f (t)
1e(g cosvt2av) with a small parametere. Therefore the
periodic driving force and friction are treated as a pertur
tion. The noise is included in the unperturbed term and
2695 ©1999 The American Physical Society



b
pe

lu
tia

e
e

t

bl
ai
ar
m

he
m
t

ty
a
te

as

re
o

o
l,
ul

udy
est

uch
ries
The
bil-
nt
s
ite

tive
are

pe-
ov
is-
h

(
C
this

on-
nov
l to
ell
ise

r or
ble

e

ell
up-

.
ise,

2696 PRE 59T. SROKOWSKI
unperturbed system is given by the HamiltonianH05V2/2
2X2/21X4/42 f (t)X. The Melnikov distanceD is defined
as a projection of a vector linking the stable and unsta
separatrices at a given time, along a normal to the un
turbed orbit @7#. Let t i (•••,t21,t050,t1,•••) denote
the times at which the stochastic force changes its va
ThenD can be expressed as a function of an arbitrary ini
time t in the following way:

D~t!52g cos~vt!I 11g sin~vt!I 21aI 3 . ~2!

The integrals I 15( i 52`
` * t i

t i 11Vi(t)cosvt dt, I 2

5( i 52`
` * t i

t i 11Vi(t)sinvt dt, and I 35( i 52`
` * t i

t i 11Vi
2(t) dt

contain the velocity of the unperturbed systemVi , corre-
sponding to the separatrix solutionH050 with f (t)5 f i .
The direct integration leads to the expression

Vi~ t !52
A2~123j i

2!3/2

A12j i
2

3
sinhA123j i

2t

~coshA123j i
2t1A2j i /A12j i

2!2
, ~3!

where j i522A3 cos(ui /31p/3) and u i5arccos 3A3 f i /2.
If D changes sign for anyt, separatrices intersect each oth
giving rise to homoclinic instability. We can introduce th
order parameter

O5
a

g

I 3

AI 1
21I 2

2
, ~4!

which is a stochastic quantity. Equation~2! implies that an
irregular behavior emerges ifO,1. Thus the probability tha
the motion is regular,Preg(a,g,v,k), is proportional to the
number of cases satisfying the conditionO.1.

We have calculated the parameterO, simulating quantities
t i and f i for both AC (RD50.06,LD50.2) and EC (RD
50.25,LD50.2) cases. An event in the statistical ensem
is determined by initial condition of the particle in the Sin
billiard. We have chosen initial conditions sampling the p
ticle position uniformly inside the billiard and its momentu
on the unit circle. Figure 1~a! shows the dependence ofPreg
on the frequencyv. If the friction coefficient equals the
amplitude of the driving force (a5g), the noiseless system
exhibits a chaotic window aroundv51. The EC noise
slightly diminishes that window. On the other hand, for t
AC noise the border between regularity and chaos beco
diffused and a stable behavior also takes place inside
noiseless chaotic window, though with small probabili
The qualitative difference between both kinds of noise c
also be observed if we start from the critical order parame
value (O51) of the noiseless system, and gradually incre
the noise amplitudek @Fig. 1~b!#. In contrast to the rapid turn
toward the regular regime in the EC case,Preg(k) rises
slowly and saturates at a finite value for the AC noise. The
fore, the response of the system to small perturbation is m
moderate for the algebraic noise correlations.

The condition of transverse intersection,O,1, indicates
the appearance of local instability in the neighborhood
separatrices after applying a small perturbation. In genera
does not imply the existence of strange attractor and irreg
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motion in a substantial domain of the phase space. To st
the fully chaotic case, we have calculated the larg
Lyapunov exponentsl @13#, determined from linearized
equations of motion integrated along a noisy trajectory. S
procedure estimates the divergence rate of close trajecto
subjected to the same realizations of the stochastic force.
Lyapunov exponent is a good measure of dynamical insta
ity of systems with white noise, unless a strong intermitte
behavior is present@14#. The AC noise, which does not act a
isolated impulses but its nonzero values persist for a fin
period of time, can be caused in practice by some collec
mechanism. Then the assumption that close trajectories
affected by the same value of random force would be es
cially reasonable. For problems with noise, the Lyapun
exponent is a stochastic quantity, given by a probability d
tribution. Figure 2~a! presents such distributions for bot
kinds of noise correlation. The average ofl for the EC noise
retains the same value as for the noise-free casel
50.165), and the distribution is narrow. Conversely, the A
noise reduces the Lyapunov exponent considerably, and
effect becomes stronger for larger noise amplitudek @Fig.
2~b!#. Finally, for sufficiently strong noise,̂l& falls to zero
because the dynamics is dominated by long intervals of c
stant acceleration. On the other hand, the average Lyapu
exponent for the EC noise remains constant, and is equa
the noise-free value. The latter result agrees with the w
known fact that in the chaotic regime the uncorrelated no
does not modify the Lyapunov exponent substantially@15#.

One can ask how the character of motion, either regula
chaotic, is reflected on physical, experimentally measura
quantities. In Ref.@4# we studied the motion of a particl
subjected to a quadratic~integrable! potential and both AC
and EC noises, in particular the escape from a potential w
and a passage over a barrier. Models of that kind are s

FIG. 1. ProbabilityPreg that the motion is homoclinically stable
The solid and dotted lines indicate the cases of AC and EC no
respectively.~a! Preg calculated as a function ofv with parameters
a5g and k50.3. The noise-free result (k50) is marked by the
dashed line.~b! Preg as a function of the noise amplitudek, with
parametersa53A2pgv/4 cosh(pv/2), g50.02, andv51.5, cor-
responding to the critical order parameter value (O51) of the
noiseless system.
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posed to describe, e.g., the evaporation and fission proce
in nuclear physics. We have found that the survival proba
ity, defined by the number of stochastic trajectories that
not yet escape at a given time, has a tail proportional tot.
The energy of particles, both escaping from the well a
passing over the barrier, possesses a distribution with
Gaussian tail — a sign that equilibration has not bee
reached, even for long survival times. On the other hand,
shape of the energy distribution for the EC noise is expon
tial ~Maxwellian!. In the latter case, the equilibration resu
from frequent changes of the applied stochastic for
whereas the AC noise is connected with long intervals
constant acceleration. Within such intervals the motion
comes very regular, due to the balance between the noise
the conservative force@4#. Another characteristic feature o
the energy distribution for the AC noise is the presence o
sharp peak, positioned at a relatively low energy, observe
the depth of potential well is not too large. The appeara
of the peak is independent of a particular form of noise g
erator@16#, and also takes place for the generalized Lange
equation, including the retarded friction term@17#. The peak
corresponds to escaping particles subjected to only a si
value of the stochastic force.

A similar study can be carried out with system~1!. A
double-well system with periodic perturbation and noise
been frequently applied to model a variety of problems, e
resonances in lasers@18#, recurrences of the Earth’s ice ag
@19#, and sensory neuron activity@20#. The consequence o
chaos for the particle escape through a barrier, both with
without white noise, has been also studied@21#. In this paper,
we will present a simple example of such process, with
AC noise, and compare results for regular and chaotic ca
For that purpose, we put the particle at the bottom of
right potential minimum, and compute the time the oscil
tory force and the AC noise need to ‘‘throw’’ the partic
above the barrier. Then the calculation is terminated.
also determine the total particle energy just after the bar

FIG. 2. ~a! Distributions of the Lyapunov exponent calculate
with parametersa51, g52, v51.5, andk50.2. ~b! The average
Lyapunov exponent as a function ofk; other parameters are th
same. The solid and dotted lines correspond to the cases of AC
EC noise, respectively.
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crossing, a quantity accessible experimentally for ma
physical problems. Two cases are considered: the cha
case (a50.001, g50.5, v51 andk51), characterized by
positive Lyapunov exponents for systems both with a
without noise (k50); and the regular case (a50.3, g
50.2, v51 andk50.2), for which the respective exponen
vanish. The survival probability has an algebraic 1/t tail in
both cases, similarly as for the quadratic potential@4#. The
energy distributions of particles at the barrier are juxtapo
in Fig. 3. The shape of the distribution is relatively smooth
the regular case@Fig. 3~b!#, and the tail has a Gaussian shap
This result agrees with spectra obtained for the quadr
potential. The chaotic case, shown in Fig. 3~a!, is different.
Since the deterministic force can now randomize the moti
equilibration is easier and the tail turns to the exponen
~Maxwellian! shape. Only for large energies does it be
down more sharply~not shown in the figure!. The highest
peak results from the existence of long free paths of part
in the billiard @4#—it corresponds to trajectories of th
Brownian particle driven by a single constant value of t
stochastic force. A peculiar consequence of chaoticity sho
up at the low-energy region of the spectrum, where a co
plicated structure of many maxima develops. A full asse
ment of the experimental implications of differences betwe
both kinds of spectra for specific physical processes ne
individual studies.

The work was partially supported by KBN Grant No.
P03 B 14010.

FIG. 3. Energy distribution of particles passing over the pot
tial barrier for the AC noise.~a! The chaotic case (a50.001, g
50.5, v51, andk51); the statistical error is comparable to th
linewidth (83106 trajectories calculated!. The tail of the distribu-
tion ~not shown in the figure! has an exponential shape.~b! The
regular case (a50.3, g50.2, v51, and k50.2); the statistical
ensemble comprises 106 trajectories. Both distributions are norma
ized to unity.
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