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Chaotic Langevin equation with the deterministic algebraically correlated noise
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We solve the Langevin equation, consisting of a double-well potential and a periodic time-dependent driving
term, with a deterministic, algebraically correlated noise. Homoclinic instabilities are studied by means of the
Melnikov method. The influence of noise on chaotic motion is discussed in terms of Lyapunov exponents. The
results are compared with the case of exponentially falling noise correlations. A simple example of passage
over the potential barrier is considered in the context of dynamical stalpfiy063-651X99)05403-3

PACS numbegps): 05.40—a, 05.45-a

The Langevin description of a stochastic process, includ- X=v
ing the uncorrelated random foréét), is in many cases an ' 1)
unrealistic idealization. In fact, a process can be approxi-
mately regarded as Markovian if the time scales involved are
large compared to the noise correlation time. Such an ap- i
proximation must fail if one tries to describe a high- W_here we haye taken the particle mass to be equal to 1. For
dimensional system using the Langevin formalism with onlydifférent choices of constant parameters y, and w, the
few degrees of freedom, because that procedure destroys ffing oscillator beha\(es either regularly or chaotically
general the Markovian property of the original systgh 10]. About the stochastic forci(t) we assume thatf (t))
Some physical problems impose specific requirements in thg 0 @ndCq~ 1%, where() denotes the average over a sta-
of matter correlations. For example, algebraic correlationdiStical ensemble. A physical process which meets these re-
(AC’s), have been found in connection with the noise_quwem_ents,_ and therefqre can be used as a noise genera_tor in
induced Stark broadening?] and molecular dynamics de- ngmencal simulations, is the Lorentz gas Qf pgnodm_ally dIS.-
scription of nuclear collision§3]. In those problems, the trlputed scatterers, egquwalent to the Smm p|ll|ard with peri-
stochastic force autocorrelation functi@(t)=(f(0)f(t)) odic boundary con_dltlons. That de_termlmstlc, conservative,
~1k. This form of the noise autocorrelation function implies @nd strongly chaotic system consists of a particle with the
important consequences for the stochastic motion of th¥€loCity u=(uy,u,), bouncing elastically from hard disks
Brownian particle[4]. The diffusion coefficient is not con- and moving freely between successive collisions. The par-
stant but rises with time like Iy thus the transport is faster (Cle motion is determined by geometry of the billiard: the
than in the case of rapidly decaying correlatitiee anoma-  disk radiusRp and the distance between disk centegs.
lously enhanced diffusionTrajectories of the Brownian par- On€ can distinguish two important cases. Up>2Rp
ticle are shaped typically for vy flights [5]. Moreover, the (thg open horizon th(_a partlcle_ can .wander throughout the
energy spectra of particles escaping from a potential well ofntire Iatnce_, other_\lee the. disks intersect themselves and
parabolic shape have a Gaussian tail, and exhibit a prdh® particle is confined within a small aretae close hori-
nounced sharp peak, whereas the survival probability deZon. In_the case of open horizon the_ particle velocity auto-
pends on time like 1/ In most of the applications, however, correlation functionC,=(u;(0)ui(t)), i=1 and 2 has the
we have to deal with potentials more complicated than théeduired algebraic form 4/ in the limit of long time[11].
harmonic oscillator considered in Ré#], and systems with  ThiS surprisingly long correlation tail |57?(’1ue to the slowly
many degrees of freedom. Then the motion can become chf2lling free path lengths distribution-s™* [12]. For the
otic. The main purpose of this paper is to study the onset ofl0se horizorC, is exponentialthe EC case Thus inserting
chaos in the Langevin equation with AC noise. the velpcny of .part|cle in the. Lorentz gas .system to the

A first token of irregularity in a dynamical system is the L@ngevin equation, one can simulate both kinds of correla-
presence of homoclinic points. Stable and unstable manifolddon. In the following, we takef(t) =ku,(t) wherek is the
connected to a given hyperbolic fixed point do not coincideN0ise amplitude, providingu|=1. We have ku,(t)=f;
as is the case for an integrable system, but they themselvesconst fortj=<t<t;, if collisions with disks take place at
intersect transversely. As a result, the motion near separdmet;. .
trices becomes chaotic. A method introduced by Melnikov For general nonlinear systems, the stable and unstable
[6,7] allows us to identify the homoclinic instability in the Separatrices usually do not join to each other smoothly but
first order of the perturbation theory. Bulsara, Schieve, andntersect themselves. The Melnikov idea consists of checking
Jacobs[8] used it to study stability properties of nonlinear Whether that intersection really happens, calculating directly
Langevin equations with white noise. We will apply the the dlstarjce between the sepgratrlces in the first order of the
Melnikov method to a system consisting of a double-wellPerturbation theory. To apply it to our problem, we rewrite
potential, friction and a time-dependent periodic foftee  the Langevin equation1) in the form v=x—x3+f(t)
Duffing oscillator[9]), driven additionally by the stochastic, + e(ycoswt—av) with a small parametee. Therefore the
algebraically correlated forcé(t). The Langevin equation periodic driving force and friction are treated as a perturba-
reads tion. The noise is included in the unperturbed term and the

v=x—x3—av+ v coswt+ (1),
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unperturbed system is given by the Hamiltonidg=V%/2  motion in a substantial domain of the phase space. To study
— X224+ X*/4—f(t)X. The Melnikov distanceD is defined the fully chaotic case, we have calculated the largest
as a projection of a vector linking the stable and unstablé.yapunov exponents\ [13], determined from linearized
separatrices at a given time, along a normal to the unpelequations of motion integrated along a noisy trajectory. Such
turbed orbit[7]. Let t; (---<t_;<ty=0<t;<---) denote procedure estimates the divergence rate of close trajectories
the times at which the stochastic force changes its valuguypjected to the same realizations of the stochastic force. The
'I_'hen D can be exp_ressed as a function of an arbitrary initiaILyapunov exponent is a good measure of dynamical instabil-
time 7 in the following way: ity of systems with white noise, unless a strong intermittent
D(7)=—ycod wr)l;+ ysinwr)l,+al 5. 2) _behavior_is present4]. _The AC noise, which doe_s not act as
isolated impulses but its nonzero values persist for a finite
The integrals |1=Ei°0:_ocf::“Vi(t)COSwt dt, I, periohd of time,hcan tr)]e caused in prar(]:ticelby some collective
o 4 . e 4 mechanism. Then the assumption that close trajectories are
:Ei=*°°fti+lvi(t)s'n“’t dt, and |3_Ei=*°°fti+lvi2(t) dt affected by the same value of random force would be espe-
contain the velocity of the unperturbed systdfn, corre-  cially reasonable. For problems with noise, the Lyapunov

sponding to the separatrix solutiddg=0 with f(t)=f;. exponent is a stochastic quantity, given by a probability dis-
The direct integration leads to the expression tribution. Figure 2a) presents such distributions for both
J2(1-382)3 kinds of noise correlation. The averagehofor the EC noise
Vi(t)=— i retains the same value as for the noise-free case (
: J1— giz =0.165), and the distribution is narrow. Conversely, the AC
noise reduces the Lyapunov exponent considerably, and this
sinh 1—3§i2t effect becomes stronger for larger noise amplitkdgFig.

X 3 2(b)]. Finally, for sufficiently st i
a2 12,2 . y, for sufficiently strong nois€\) falls to zero
(coshy/1-3¢t+ V2611 &) because the dynamics is dominated by long intervals of con-
where &=—2./3 cos@ /3+ m/3) and ¢,=arccos 3/3f,/2.  stant acceleration. On the other hand, the average Lyapunov

If D changes sign for any, separatrices intersect each other&xponent for the EC noise remains constant, and is equal to
giving rise to homoclinic instability. We can introduce the the noise-free value. The latter result agrees with the well

order parameter known fact that in the chaotic regime the uncorrelated noise
does not modify the Lyapunov exponent substantigl¥].

a i One can ask how the character of motion, either regular or

0= ; m 4 chaotic, is reflected on physical, experimentally measurable

guantities. In Ref[4] we studied the motion of a particle

which is a stochastic quantity. Equati¢®) implies that an ~ Subjected to a quadratiéntegrable potential and both AC
irregular behavior emerges@< 1. Thus the probability that and EC noises, in particular the escape from a potential well
the motion is regularP . a,y,®,k), is proportional to the and a passage over a barrier. Models of that kind are sup-
number of cases satisfying the condition>1.

We have calculated the parame@rsimulating quantities 1.0
t; and f; for both AC (Rp=0.06Lp,=0.2) and EC Rp
=0.25.5=0.2) cases. An event in the statistical ensemble
is determined by initial condition of the particle in the Sinai
billiard. We have chosen initial conditions sampling the par-
ticle position uniformly inside the billiard and its momentum
on the unit circle. Figure (B) shows the dependence Bfq
on the frequencyw. If the friction coefficient equals the 0.0
amplitude of the driving forced=v), the noiseless system

e
=3

exhibits a chaotic window aroundb=1. The EC noise 1.0

slightly diminishes that window. On the other hand, for the i
AC noise the border between regularity and chaos becomes w 08 i
diffused and a stable behavior also takes place inside the & i
noiseless chaotic window, though with small probability. o o6l i

The qualitative difference between both kinds of noise can b ]
also be observed if we start from the critical order parameter

value (O=1) of the noiseless system, and gradually increase 0.0 0.1 0.2 oia 0.4
the noise amplitud& [Fig. 1(b)]. In contrast to the rapid turn k
toward the regular regime in the EC cagge(k) rises FIG. 1. ProbabilityP, that the motion is homoclinically stable.

slowly and saturates at a finite value for the AC noise. Therethe solid and dotted lines indicate the cases of AC and EC noise,

fore, the response of the system to small perturbation is morspectively.(a) P, calculated as a function @$ with parameters

moderate for the algebraic noise correlations. a=1v andk=0.3. The noise-free resulkE&0) is marked by the
The condition of transverse intersectidd<1, indicates  dashed line(b) P4 as a function of the noise amplitude with

the appearance of local instability in the neighborhood ofparametersy=3y27yw/4 cosh@re/2), y=0.02, andw=1.5, cor-

separatrices after applying a small perturbation. In general, itesponding to the critical order parameter val@®=1) of the

does not imply the existence of strange attractor and irregularoiseless system.
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FIG. 2. (a) Distributions of the Lyapunov exponent calculated
with parametersy=1, y=2, o=1.5, andk=0.2. (b) The average
Lyapunov exponent as a function &f other parameters are the 10-8 ‘ ‘ ‘ ‘
same. The solid and dotted lines correspond to the cases of AC and 0.00 0.05 0.10 0.15 0.20 0.25
EC noise, respectively. E

posed to describe, e.g., the evaporation and fission processesFIG. 3. Energy distribution of particles passing over the poten-
in nuclear physics. We have found that the survival probabiltial barrier for the AC noise(a) The chaotic casea(=0.001, y

ity, defined by the number of stochastic trajectories that do=0.5, @=1, andk=1); the statistical error is comparable to the
not yet escape at a given time, has a tail proportionaltto 1/ linewidth (8x 10° trajectories calculatgéd The tail of the distribu-
The energy of particles, both escaping from the well andion (not shown in the figurehas an exponential shapga) The
passing over the barrier, possesses a distribution with thggular case ¢=0.3, y=0.2, w=1, andk=0.2); the statistical
Gaussian tdi— a sign that equilibration has not been ensemble comprises 4@ajectories. Both distributions are normal-
reached, even for long survival times. On the other hand, thed to unity.

shape of the energy distribution for the EC noise is exponengrossing, a quantity accessible experimentally for many
tial (Maxwellian). In the latter case, the equilibration results ppysjcal problems. Two cases are considered: the chaotic
from frequent changes of the applied stochastic forceggge @=0.001, y=0.5, =1 andk=1), characterized by
whereas the AC noise is connected with long intervals Ofpositive Lyapunov exponents for systems both with and
constant acceleration. Within such intervals the motion beyithout noise k=0); and the regular caseaE0.3, y
comes very regular, due to the balance between the noise an_do_z’ w=1 andk=0.2), for which the respective exponents
the conservative forcg4]. Another characteristic feature of \4nish. The survival probability has an algebrait thil in
the energy distribution for the AC noise is the presence of gt cases, similarly as for the quadratic poterftgl The
sharp peak, positioned at a relatively low energy, observed ignergy distributions of particles at the barrier are juxtaposed
the depth of potential well is not too large. The appearancg, rig 3. The shape of the distribution is relatively smooth in
of the peak is independent of a particular form_of NoISe geNine regular caskFig. 3b)], and the tail has a Gaussian shape.
erator[ 16], and also takes place for the generalized Langevifirhs result agrees with spectra obtained for the quadratic
equation, including the retarded friction teft7]. The peak  pqtential. The chaotic case, shown in Figaj3is different.
corresponds to escaping particles subjected to only a sing§ince the deterministic force can now randomize the motion,
value of the stochastic force. _ equilibration is easier and the tail turns to the exponential
A similar study can be carried out with syste). A (\axwellian) shape. Only for large energies does it bend
double-well system with periodic perturbation and noise hagjgwn more sharplynot shown in the figure The highest
been frequently applied to model a variety of pro,blt_ams, €.0.peak results from the existence of long free paths of particle
resonances in lasef$8], recurrences of the Earth’s ice ages the billiard [4]—it corresponds to trajectories of the
[19], and sensory neuron activif20]. The consequence of grownian particle driven by a single constant value of the
chaos for the particle escape through a barrier, both with angyochastic force. A peculiar consequence of chaoticity shows
W|tho_ut white noise, has been also studigd]. In this Paper, yp at the low-energy region of the spectrum, where a com-
we will present a simple example of such process, with thgjicated structure of many maxima develops. A full assess-
AC noise, and compare results for regular and chaotic casegent of the experimental implications of differences between

For that purpose, we put the particle at the bottom of the,qi, kinds of spectra for specific physical processes needs
right potential minimum, and compute the time the oscilla-jgividual studies.

tory force and the AC noise need to “throw” the particle
above the barrier. Then the calculation is terminated. We The work was partially supported by KBN Grant No. 2
also determine the total particle energy just after the barrieP03 B 14010.
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